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The frequency spectrum of simple waves is used to derive a closed form analytical representation
for the frequency spectrum of damped nonlinear pulses in elastic materials. The damping
modification of simple wave theory provides an efficient numerical method for calculating
propagating wave forms. The spectral representation, which is neither pulse length nor amplitude
limited, is used to obtain estimates for parameters of the nonlinear state relation for a sandstone
sample from published experimental data, and the results are compared with those of other theories.
The method should have broad application to many solids.

PACS numbers: 43.25.Dc@MAB #

INTRODUCTION

Nonlinear pulse propagation experiments conducted at
Los Alamos National Laboratory are directed in part at de-
termining nonlinear state relations for elastic earth
materials.1 In one of the experimental configurations, axial
compressional pulses are driven in a two meter cylindrical
rod by oscillating a piezo-electric crystal at one end. Fre-
quencies are of the order of 10 kHz and pulse times of the
order of a ms. The spectrum of resulting displacements is
obtained from displacement measurements made prior to the
arrival of reflections from the undriven end.2 Most of the
theory in support of the program has modeled the stress–
strain relation of samples assuming ideal nonlinear elasticity.
Efforts to explore the effects of dissipative mechanisms and
additional nonlinear contributions,~e.g., hysteresis and dis-
crete memory! are in progress. It is likely that nonideal ef-
fects will be interpreted in terms of a departure from those of
the ideal theory. In view of this, it is evident that a best
possible understanding of propagation in the ideal nonlinear
elastic limit is important.

In this article, a representation of the frequency spec-
trum for these experiments is derived that can be used to
algebraically infer parameters of assumed ideal elastic
stress–strain relations from measured spectral data. Although
other methods have been suggested in support of these
experiments,3 attempts to determine the state relation have
depended primarily on frequency domain analyses of nonlin-
ear models which incorporate state relations with free param-
eters. Values of these parameters have been inferred by com-
parison of predicted spectral amplitudes using perturbation
methods with those generated in experiments.2,4,5 The most
successful of these theories has been that of Van Den
Abeele.5 Using incremental damping corrections to un-
damped wave propagation similar to those of an earlier study
of noise propagation in fluids,6 very good agreement with the
mode structure seen in the experiment was obtained.

In this article, propagating wave forms are calculated in

the time domain by modifying undamped simple wave
propagation7 to include dissipation. The spectral representa-
tion of these waves is obtained by Fourier transform. Be-
cause the wave forms are calculated in the time domain, the
evolution of the propagating pulses are easily visualized and
interpreted as the results of compressions and dilations. Re-
sults of this methodology include a transparent interpretation
of experiments and a more efficient and flexible numerical
capability for a wider variety of pulse profiles than is achiev-
able with other methods. The representation admits finite
amplitude sources of finite pulse length.

To facilitate comparison with other theories, the repre-
sentation is used in this article to analyze the spectrum of a
single frequency cw source assuming a cubic approximation
to the stress–strain relation. The values of the first nonlinear
coefficient found here are at the upper end of the range of
values found by Van Den Abeele.5 The values of the second
nonlinear coefficient found here are also contained in the
range found by him, with differences in the upper and lower
ranges differing by factors of 2 or less. Some general prop-
erties of propagation are illustrated numerically. A more de-
tailed examination will appear in a separate paper.8

The nondissipative model is discussed in Sec. I, and the
exact spectral representation for undamped wave propaga-
tion is derived in Sec. II and illustrated for a monotonal pulse
in the small amplitude source approximation. In Sec. III,
expressions are derived for coefficients of cubic approxima-
tions to stress–strain relations assuming weak nonlinearity in
terms of spectral amplitudes. The spectral representation is
corrected to include dissipation in Sec. IV, and state param-
eters~e.g.,b andd! are inferred from experimental data and
compared to those obtained by Meeganet al.,2 and Van Den
Abeele. Some properties of damped wave propagation are
illustrated numerically in Sec. V. We conclude with a dis-
cussion of results.

I. THE NONDISSIPATIVE MODEL

The simplest one-dimensional model for studying non-
dissipative compressional wave propagation from a pulsed
source in an elastic medium is the first order 232 system
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consisting of the equations of continuity and force balance
for the mass density per unit length,r(x,t), and displace-
ment velocity,v(x,t). ~The laboratory position coordinate is
x, and time ist.! Analysis of the dynamics predicted by this
model is facilitated by using Lagrangian coordinates~i.e.,
coordinates fixed in the material!. An element undergoing
displacements carries its Lagrangian coordinate,z, with it for
all time. @The laboratory coordinate,x, of an element at time
t5T is a function of its initial position, or Lagrangian coor-
dinate,z; x5x(z,T). The displacement velocity is the partial
derivative ofx with respect toT.# In terms of the Lagrangian
coordinate, the continuity and force balance equations are

eT2vz50, vT2
1

r*
sz50,

~1!

e[2S 12
r*

r D5
]~x2z!

]z
.

~If a coordinate in the unstressed bar,z, is displaced to the
position, x, conservation of mass requiresr* dz5r dx.!
Here,r* is the density in the absence of stress. The elastic
stress,s, of the material is assumed to depend on space and
time only via strain,e. SubscriptsT or z indicate partial
differentiation with respect to the subscripted variable with
the other held constant.@Familiar second-order wave equa-
tions for nonlinear compressional wave propagation may be
obtained from Eq.~1! by elimination of variables.# If s is a
single valued function ofe, plasticity and damping effects
are not included in this model. If the relation between stress
and strain is one to one, as will be assumed in this article, the
state relation may be written as eithers~e! or e~s!. Both
functions vanish when their arguments are zero and are taken
to be monotonically increasing functions of their arguments.

The system, Eq.~1!, together with the state relation,
yields a hyperbolic system of first-order partial differential
equations for the velocity,v, and stress,s ~or strain param-
eter,e!. The local characteristic paths~or signal ‘‘speeds’’!
in (z,T) space are given by3

dz

dT
56As8~e!/r*[6c~e!, ~2!

wheres8(e)5ds/de. The space–time paths corresponding
to 1c and2c will be referred to as forward and backward
propagating information paths, respectively.@c(0)5c0 is the
signal speed of linear wave propagation.#

When analyzing wave dynamics initiated by a pulse at
one end of a bar,z50, initiated atT50, it is convenient to
partition space–time into two regions. The first region is the
collection of space–time coordinates at which time is suffi-
ciently early that propagation at a position has not yet been
affected by signal reflection from the other end of the bar.
The other is its complement.

Pulse propagation experiments at Los Alamos aimed at
studying nonlinear elastic properties of media analyze spec-
tral properties of finite amplitude signal propagation in the
first region. These spectra are the subject of this article. It
can be shown3,7 that for these experiments Eq.~1! predicts

that in the first region~i! both v ande are constant on each
forward propagating path (dz/dt51c) and ~ii ! there is a
functional relation betweenv ande:

v52E
0

e

c~ ẽ !dẽ. ~3!

Equation~3! implies that in the first region,e, and there-
fores, are functions ofv. Sincee is constant on the forward
propagating paths of this region and the signal speed depends
only on e, each path is a straight line. The first region is,
therefore, a ‘‘simple wave region.’’7 The convergence and
divergence of linear forward propagating paths in the simple
wave region distort the initial pulse form, thereby altering
the spectrum of the stress, strain, and velocity pulses con-
fined to this region.

II. SPECTRA IN THE SIMPLE WAVE REGION

If t(z,T) is the time the forward propagating path in the
simple wave region passing through a point, (z,T) enters the
elastic material atz50 carrying information about displace-
ments atz50,

t~z,T!5T2
z

c„e~0,t!…
. ~4!

If at z, a time-dependent pulse,p(z,T), of the stress, strain,
or velocity is confined to a time interval in the simple wave
region, its frequency spectrum is given by its Fourier trans-
form:

p~z,v!̂[
1

A2p
E
pulse length

p~z,T!exp~2 ivT!dT,

5
1

ivA2p
E
pulse length

]p~z,T!

]T
exp~2 ivT!dT,

5
1

ivA2p
E
initial pulse length

dp~0,t!

dt
exp$2 iv@t

1z/c„e~0,t!…#%dt. ~5!

Since the detector most often used in experiments is an ac-
celerometer,p5v will be employed. Using Eq.~3!, Eq. ~5!
becomes a Fourier transform of a function ofv

v~z,v!̂5
1

A2p
E
initial pulse length

H E
0

v~0,t!

exp$2 iv

3@z/c„e~ ṽ !…#%dṽJ exp~2 ivt!dt. ~6!

Equation ~6! may be used to determine parameters of
nonlinear state relations from displacement spectra of weakly
nonlinear pulses if the frequency spectrum is provided em-
pirically.

Assuming that the pulse is weakly nonlinear, so
uv/cu!1, the expansion of the state relation is

s~e!5~r* c0
2!S e1

b

2!
e21

d

3!
e31••• D . ~7!
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~The notation for the coefficients in series expansions of state
relations has not been standardized: theb/2! andd/3! in this
article are theb andd of Meeganet al.2 and theb/2 andd/3
of Van Den Abeele.5! Using the expansion of the state rela-
tion together with Eq.~3! yields an expansion for the strain
in terms of the velocity

2e5
v
c0

1
b

4 S vc0D
2

2
1

12
~d22b2!S vc0D

3

1••• .

Substituting this expansion in the signal speed of the expo-
nent of the velocity transform results in an integral involving
only the driving displacement velocity pulse and parameters
of the Taylor series expansion of the state relation. The ex-
ponential can be expanded in a Taylor series inv/c. The
result is a Fourier transform of a sum of powers of the ap-
plied displacement velocity pulse,

v~z,v!̂[
c0

A2p
expS 2 iv

z

c0
D

3E exp~2 ivt!ES v~0,t!

c0
Ddt,

ES v~0,t!

c0
D5S v~0,t!

c0
D H 12

1

2! S ivz2c0
b D S v~0,t!

c0
D

1
1

3! S ivz2c0
b D F S ivz2c0

b D1
~d22b2!

b G
3S v~0,t!

c0
D 21•••J . ~8!

Equation~8! is the series expansion of the frequency spec-
trum in source amplitude for weakly nonlinear sources. The
expansion may be carried out to any order, using as many
terms as one desires in the expansion of the state relation.
For frequencies and lead parameters~e.g.,b and d! of the
state relation which leave the size of the exponential less
than about one-half, the first few terms should provide a
reasonably good approximation to the spectrum for the pre-
diction and interpretation of experimental data.

If the source is predominantly multiperiod and single
frequency with angular frequency,V, its velocity frequency
spectrum may be approximated using a cw source

v~0,t!5mc0 cosV~t2t0!

~m.0 is a Mach number for the source! of infinite pulse
length. The resulting frequency spectrum is a sum of Diracd
functions centered at integer multiples ofV ~i.e.,v56nV,
n50,1,2,3,...!. ~Amplitudes of the acceleration spectrum are
just uvu times those of the velocity spectrum.! Up to and
including cubic terms inv/c, one finds that amplitudes of the
acceleration spectrum atz are given by

A~z,1V!5A2p~Vc0m!

3AF12
m2

8 S Vz

2c0
b D 2G21Fm2

8 S Vz

2c0
b D d22b2

b G2,
A~z,2V!5A2p~Vc0m!mUVz

2c0
bU, ~9!

A~z,3V!5A2p~Vc0m!
9m2

8 UVz

2c0
bU

3AS Vz

2c0
b D 21S d22b2

3b D 2.
Assuming a sign for the convexity of the stress–strain

relation, b is determined by the acceleration amplitude at
2V. The restriction for the cubic coefficient,d, is then found
either from the amplitude at 1V or 3V.

While the expression forA(z,2V) would be changed if
the expansion were to be extended to include fourth powers
of v/c, the expressions forA(z,1V) andA(z,3V) would not
be. Even powers of the sine function contribute to ampli-
tudes at even multiples ofV, and odd powers contribute to
amplitudes odd multiples ofV.

III. COMPARISON OF SIMPLE WAVE THEORY AND
EXPERIMENTAL DATA

Within the context of the model, the spectral represen-
tation given by Eq.~6! is exact in the simple wave region.
Consequently, the series expansion, Eq.~8!, yields the
unique power series representation in source strength around
zero amplitude for undamped weakly nonlinear elastic
pulses. Evidently, for any finite amplitude source, if the fre-
quencies employed or distances from the source at which
data are taken are sufficiently large, successive terms in the
series expansion will become comparable in magnitude, and
the expressions for the state parameters obtained using famil-
iar ‘‘zero-amplitude’’ perturbation methodology will be in-
correct. The expansion remains valid, but its utilization will
be more difficult.

Data from pulse propagation experiments in a Berea
sandstone bar2 are shown in Fig. 1~a! and ~b!.

Using the data sets and the expressions forA(z,2V) and
A(z,3V),

UVz

2c0
bmU2!1,

S d22b2

b
m D 259F S 8A~z,3V!

9A~z,2V! D
2

2S Vz

2c0
bm D 2G . ~10!

Substituting these values in the expression forA(z,1V), one
concludes that

A~z,1V!

Alinear~1V!
'1. ~11!

This is the small amplitude perturbation hypothesis in the
absence of damping. However, all data sets satisfy

A~z,1V!

Alinear~1V!
,
1

2
. ~12!

State relation parameters inferred from amplitudes of higher
frequency modes assuming nondissipative propagation are
incompatible with propagated spectral amplitudes measured
at the source frequency.
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IV. DAMPING-CORRECTED SPECTRAL
REPRESENTATION

In a recent analysis of pulse propagation experiments,
Van Den Abeele5 employed equations without dissipation to
numerically propagate nonlinear waves with discrete spectra
short incremental distances in a semi-infinite bar. After each
incremental step, the propagated spectral amplitudes were
modified assuming linear damping before being used as a
source for propagation through the next incremental dis-
tance. Nonlinear evolution of the amplitudes was controlled
by a small amplitude ordering assumption. In effect, a simple
wave, generated by a cw source, was propagated in each
interval, and the amplitudes of the propagated wave are cor-
rected at the end of the interval assuming a phenomenologi-
cal linear exponential damping. With this procedure it was
found thatub/2u'300–500 andd/6'2~108–109!. The range
for b is much lower than that of an earlier perturbation
analysis2 that found ub/2u'~0.5–1!104, whereas the lower
end of the range ford is in agreement with the earlier sug-
gested upper end of the range,d5O(b2).

A modification of the representation of the frequency
spectrum for simple waves is now proposed in order to ob-
tain a mathematically tractable one that includes damping
effects. To obtain the representation, a linear damping of the

simple wave velocity is first imposed on the simple wave
signal speed paths:

v~z,T!5v~0,t!exp~2kz!. ~13!

Maintaining the simple wave relation between velocity and
strain parameters, Eq.~3!, and applying the damped velocity,
Eq. ~13!, to the calculation of the signal speed path,

dT~z,t!

dz
5

1

c„e@v~0,t!exp~2kz!#…
,

~14!

T~z,t!5t1E
0

z dz̃

c„e@v~0,t!exp~2kz̃!#…
.

The value of the velocity is carried unchanged as a function
of z to the new signal speed path initiated at~0,t!.

With this procedure, damping changes the convergence
and divergence of paths in what was formerly a simple wave
region. Except for the uniform exponential damping of the
amplitude, the assignment of velocity on each path is un-
changed. Consequently, except for the uniform damping, the
distribution of the spectral density is due solely to the change
in the signal speed paths. Since damping with distance from
the source takes the velocity to zero along each path, the
paths, if continued indefinitely, would each parallel that of a
linearly propagating signal.~This is illustrated in Sec. V.!
However, these straight line paths, extrapolated linearly back
to z50, would generally not arrive there at the same times
that they entered the sample. A weak amplitude signal with
an approximately invariant frequency spectrum@modulo
exp(2kz)#, different from that of the source, would propa-
gate inz.

Because this procedure changes the geometry of the in-
formation paths from linear to curvilinear, the integrand of
the Fourier transform no longer separates the time depen-
dence of the source velocity andz in a simple way.

v~z,v!̂

5
e2kz

A2p~ iv!
E
initial pulse length

]v~0,t!

]t

3expH 2 ivFt1E
0

z

dz̃/c„e@v~0,t!e2k z̃#…G J dt. ~15!

However, for weak nonlinearities, expansion of the state re-
lation results in integrals of powers exp(2kz) which are
easily evaluated. The resulting exponential may be expanded
in a power series, as in the simple wave case, and delta
functions recovered for the single frequency source.

FIG. 1. ~a! Source spectra measured with an optical probe for a 13.75-kHz
drive; ~b! spectra after the wave has propagated 0.58 m for a 13.75-kHz
drive. Different curves represent different displacement amplitudes~taken
from Meeganet al., Ref. 2!.
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v~z,v!̂5
c0e

2kz

A2p
expS 2 iv

z

c0
D E exp~2 ivt!EdS v~0,t!

c0
Ddt,

EdS v~0,t!

c0
D5S v~0,t!

c0
D H 11

1

2! S ivz2c0
bK D S v~0,t!

c0
D1

1

3! S ivz2c0
bK D F S ivz2c0

bK D1
~d22b2!

b
CG S v~0,t!

c0
D 21•••, ~16!

K[
12e2kz

kz
; C[

1

2 S 12e22kz

12e2kz D5
11e2kz

2
.

The coefficientsK andC are approximately (12kz/2) and (11kz/2), respectively, if 0,kz!1. Forkz@1, their respective
values are 1/kz and 1/2.

Using the single frequency cw source approximation of Sec. III,

Ad~z,1V!5A2p~Vc0me
2kz!AF12

m2

8 S Vz

2c0
bK D 2G21Fm2

8 S Vz

2c0
bK D d22b2

b
CG2,

Ad~z,2V!5A2p~Vc0me
2kz!mUVz

2c0
bKU, ~17!

Ad~z,3V!5A2p~Vc0me
2kz!

9m2

8 UVz

2c0
bKUAS Vz

2c0
bK D 21S d22b2

3b
CD 2.

The coefficient

Alinear,d~V![A2p~Vc0me
2kz!

is the amplitude of the damped linearly propagating source mode. Ratios of the propagating damped modes provide two
equations in two unknowns:

Ad~z,1V!

Ad~z,2V!
5AF S Vz

2c0
bKm D 21

2
1

8 S Vz

2c0
bKm D G21 1

64 S d22b2

b
mCD 2,

~18!
Ad~z,3V!

Ad~z,2V!
5
9

8
AS Vz

2c0
bKm D 21 1

9 S d22b2

b
mCD 2.

These relations imply

S d22b2

b
mCD 259F S 8Ad~z,3V!

9Ad~z,2V! D
2

2S Vz

2c0
bKm D 2G ,

S Vz

2c0
bKm D 252B6AB218, ~19!

B[4F141SAd~z,1V!

Ad~z,2V! D
2

2
1Ad~z,3V!2

9Ad~z,2V! G .
For the data shown in Fig. 1~a! and ~b!, B.0 and the posi-
tive square root must be chosen. With [(Vz/2c0)bK]

2 and
$[(d22b2)/3b]C%2 determined from ratios of measured
amplitudes, the exponential decay constant,k, may then be
evaluated using any of the measured amplitudes. In particu-
lar,

k5
1

z
lnSA2p~Vc0m!u~Vz/2c0!bKmu

A0~z,2V!
D . ~20!

The implied valuesK and C, together with those of
[(Vz/2c0)bK)

2] and $[(d22b2)/3b]C%2, then easily yield
the admissible valuesb andd.

The self-consistent parameters sets for the data corre-
sponding to the two largest source strengths shown in Fig.
1~a! and ~b! are

k'1/0.23 m, ubu'~1.1!103, d'~1.6!109;
~21!

k'1/0.27 m, ubu'~1.2!103, d'~6.9!109.

At z50.58 m, where the data were taken, the values found
for k correspond to between two and three exponential fold-
ings of the source displacement. The linear exponential
damping coefficient often employed in the frequency space
description of wave propagation isk5v/2Qc0 . For the
Berea sandstone sample of the Los Alamos experiment,Q is
approximately 10. Using v5(2pN)13.75 kHz (N
51,2,3,...) yields an exponential damping factor of 1.6N/m.
The values ofk given by Eq.~20! are comparable to those
used in the frequency domain whenN52 or 3 ~i.e., 1/0.31
and 1/0.21 m!.

V. NUMERICAL EXAMPLES

The results of the previous sections are now illustrated
numerically using specific parametric values. The simple
wave solution used here was obtained using a personal com-
puter.

In the lossless, weakly nonlinear case, each wavelet~i.e.,
infinitesimal piece of the waveform! travels in space–time
along characteristics@see Eq.~2!#. Figure 2~a! shows the
characteristic paths for one cycle of a 13.75-kHz wave with
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displacement amplitude5531027 m. The typical nonlinear
parameters used in the calculation wereb5103 and
d533109. Figure 2~a! shows that the wavelets near the
peaks and troughs of the waveform both travel slower than
those at the zeros, so the wave distorts. If the first nonlinear
term ~i.e., the term containingb! dominated the nonlinearity,
one of these would travel faster and the other slower; the
dominant contribution to the signal speed would be predomi-
nantly linear. The next nonlinear term dominates for the am-
plitude used in this example because of the very large value
of d. The contribution made by this term to the signal speed
is predominantly cubic in the strain.

In contrast to the undamped case, Fig. 2~b! shows what
happens when a damping factork54/m51/0.25 m is ap-
plied. In the illustration, the damping is implemented nu-
merically by taking a small, lossless distance step and apply-
ing the damping at the end of the step. The new, damped
waveform is used to initiate the next lossless step and the
process is repeated. The contrast between Fig. 2~a! and~b! is
clear: The slopes of the paths rapidly become parallel; all
parts of the wave travel with the linear signal speed, about
2.6 km/s in this case. However, the spacing between these

‘‘nearly’’ parallel paths is different from those atz50. Be-
fore the damping results in approximately linear propagation,
finite amplitude effects~nearz50! produce nonlinear diver-
gence and convergence of signal speed paths.

To better illustrate the effect of damping, an overlay of
the two sets of characteristics is shown in Fig. 3. For this
plot, the characteristics shown in Fig. 2~a! and ~b! were ro-
tated so that characteristics corresponding to the zeros of the
wave form~which travel at the small signal speed! are hori-
zontal. The solid lines are the lossless characteristics, and the
dashed lines are the damped characteristics. With the damp-
ing that we have chosen for this example, the waveform
becomes linear~i.e., the characteristics are parallel! at only
0.2–0.3 m from the source. The damped characteristics
closely follow the undamped nonlinear paths forz,0.1 m.

Finally, Fig. 4 shows velocity waveforms generated us-
ing the same set of parameters. Figure 4~a! shows both loss-
less ~solid line! and damped~dashed line! waveforms after
the wave has propagated 0.5 m. The difference in distortion
between the two waveforms is more obvious in Fig. 4~b!
where the damped waveform has been vertically expanded so
that it has the same amplitude as the undamped wave form.

VI. DISCUSSION

An analytical representation, given by Eq.~15! for the
frequency spectrum of nonlinearly propagating pulses in
earth materials, was derived. The representation is neither
pulse length nor amplitude limited. The mathematical theory
underlying the derivation of the spectral representation pro-
vides a very efficient method for calculating both damped
and undamped nonlinear propagating wave forms. Illustra-
tions were shown in Sec. V.

The representation was obtained by first deriving the
exact representation of the frequency spectrum for one-
dimensional nonlinear pulse propagation, neglecting dissipa-
tion. Although that representation is valid~assuming un-
damped propagation! for any driving pulse profile, it was

FIG. 2. Characteristics for a single cycle of a 13.75-kHz wave of displace-
ment amplitude 531027 m traveling in a Berea sandstone bar. Values of the
nonlinear parametersb andd used in the calculations are 103 and 33109,
respectively. Both~a! undamped and~b! damped~k54/m! characteristics
are shown.

FIG. 3. Overlay of undamped and damped characteristics shown in Fig. 2.
Both sets of characteristics have been rotated so that the characteristics
corresponding to the zeros of the wave form~which propagate with the
linear signal speed! are horizontal. Undamped characteristics are the solid
lines, and damped characteristics are the dashed lines.
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applied in this article to a study of spectra of compressional
waves generated by finite amplitude, finite pulse length
sources consisting of many cycles of a single frequency. It
was shown that, for typical source frequencies and ampli-
tudes of the experiments at Los Alamos, the inclusion of
dissipation in theoretical treatments is essential for even the
roughest self-consistent estimates of state relation parameters
from measured spectral data.

The spectral representation for the undamped simple
waves was then modified to include damping effects, and the
‘‘corrected’’ spectral representation was applied to again
analyze spectra from a single frequency cw pulse source.
Values were obtained for the nonlinearity coefficients,b and
d, of a cubic approximation to the stress–strain relation for a
Berea sandstone bar using data from the experiments. The
results are given by Eqs.~21!. They were compared to
bounds obtained from numerical perturbation analyses. The
values obtained in this article for the coefficients of both the
quadratic and cubic terms are in excellent agreement with the
bounds obtained from the numerical perturbation analysis of
Van Den Abeele.5

The b’s obtained in this work are more than ten times
smaller than those obtained by Meeganet al.2 The values of

d far exceed those required by the perturbation ordering as-
sumption thatd5O(b2). The values found imply that the
spectral amplitude of the 1V term of the cw single frequency
source is very close to that of the propagating damped linear
source mode~i.e., very little energy is transferred to other
modes!. However, for the determination of state relation pa-
rameters, the validity of a small amplitude perturbation
analysis requires both

1

2 US vz

2c0
bK D S v~0,t!

c0
D U

5
~12e2kz!

2 US v/k

2c0
b D S v~0,t!

c0
D U

!1,

1

3 US d22b2

b
CD S v~0,t!

c0
D U

5S 11e2kz

6 D US d22b2

b D S v~0,t!

c0
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!1.

The first inequality, which restrictsuvu For a givenz.0,
guarantees the quadratic term in the source amplitude expan-
sion of the spectrum is smaller than the linear one. Given the
first inequality, the second then guarantees that the cubic
term is smaller than the quadratic one. For the parameters of
these experiments, the first inequality is satisfied~it is two to
three orders of magnitude smaller than unity!, but the cubic
term in the expansion of the spectral representation in the
source amplitude is about ten times that of the quadratic
term.

It is, nevertheless, interesting to note that if the calcula-
tion of the state parameters had been performed using the
perturbation method, approximately the same values ofk, b,
andd would have been obtained. This follows from the fact
that, for the values found, the square root appearing in the
expression for the spectral amplitude at 1V is approximately
equal to unity. Thus, ignoring contributions to the 1V term
from nonlinear terms in the source amplitude expansion
gives about the same value ofk. Using this value for the
damping coefficient in the 2V term yields the same values
for b. Consequently the same values ford would be obtained
from the expression for the 3V spectral amplitude. This ap-
proximate equivalence of methodologies is an accident at-
tributable to the experimental data. In a system that trans-
ferred more energy from the 1V to the 2V spectral
amplitude, calculated values ofubu would be larger and
would more strongly affect the calculation of the decay con-
stant. It should be noted, in view of the relative sizes of cubic
and quadratic terms in the expansion of the spectral repre-
sentation, that it would not be surprising to find that assum-
ing a linear damping and/or approximating the spectral rep-
resentation by a low order polynomial in source amplitude
introduces significant errors in the calculation of state rela-
tion parameters.

As a final note, it is clear from the work of others9 that
application of a classical, continuous equation of state to

FIG. 4. ~a! Velocity wave forms using the same set of parameters as those
of Figs. 2 and 3. Lossless~solid lines! and damped~dashed lines! wave
forms are shown after the wave has propagated a distance of 0.5 m.~b! The
damped waveform has been vertically expanded to make differences be-
tween the distortions of the two waveforms more apparent.
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earth materials may not always be reasonable. For example,
hysteresis and end point memory may play a significant role
in propagating waves in rocks. Consequently, multivalued
equations of state may be needed for accurate modeling.
However, the method presented here may have broad appli-
cation to nonhysteretic materials that do not contain discrete
memory and to the evaluation of nonideal effects in some
earth materials. The Berea sandstone experimental results
were chosen as a means of illustration only. Berea sandstone
under ambient conditions almost certainly requires a multi-
valued equation of state in order to more precisely model its
behavior.
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